Geostrophic Velocity Measurement Techniques for the Meridional Overturning Circulation and Meridional Heat Transport in the South Atlantic
نویسندگان
چکیده
Two ocean general circulation models are used to test the ability of geostrophic velocity measurement systems to observe the meridional overturning circulation (MOC) and meridional heat transport (MHT) in the South Atlantic. Model sampling experiments are conducted at five latitudes (between 158 and 34.58S) spanning the range of extratropical current regimes in the South Atlantic. Two methods of estimating geopotential height anomalies and geostrophic velocities are tested, simulating dynamic height moorings (T–S array) and current and pressure recording inverted echo sounders (CPIES) deployed within the models. The T–S array accurately reproduces the MOC variability with a slight preference for higher latitudes, while the CPIES array has skill only at higher latitudes resulting from the increased geopotential height anomaly signal. Whether direct model velocities or geostrophic velocities are used, MHT and the MOC are strongly correlated, and successful reconstruction of MHT only occurs when there is skill in the MOC reconstructions. The geopotential height anomaly signal is concentrated near the boundaries along 34.58S, suggesting that this is an advantageous latitude for deployment of an in situ array. Four reduced arrays that build upon the sites from two existing pilot arrays along 34.58S were examined. For these realistically sized arrays, the MOC and MHT reconstructions from the T–S and CPIES arrays have comparable skill, and an array of approximately 20 instruments can be effectively used to reproduce the temporal evolution and vertical structure of the MOC and MHT.
منابع مشابه
Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic dO observations and a geostrophic inverse model
[1] The vertical profile of meridional transport in the South Atlantic is examined by combining paleoceanographic observations with a geostrophic circulation model using an inverse method. dOcalcite observations along the margins of the South Atlantic show that upper-ocean cross-basin differences were weaker during the Last Glacial Maximum (LGM) than the Holocene. The dOcalcite observations can...
متن کاملThe Mean and the Time Variability of the Shallow Meridional Overturning Circulation in the Tropical South Pacific Ocean
The meridional transport in the Pacific Ocean subtropical cell is studied for the period from 2004 to 2011 using gridded Argo temperature and salinity profiles and atmospheric reanalysis surface winds. The poleward Ekman and equatorward geostrophic branches of the subtropical cell exhibit an El Ni~ no–Southern Oscillation signature with strong meridional transport occurring during La Ni~ na and...
متن کاملCan global warming affect tropical ocean heat transport?
Tropical meridional ocean heat transport is studied in six coupled ocean-atmosphere models in which atmospheric CO 2 concentration has been increased. In the Indo-Pacific, the strength of Subtropical Cells (STCs) changes in response to changes in the trade winds. However, the change is not consistent among models. In contrast, in all models the tropical Indo-Pacific heat transport remains nearl...
متن کاملResponse of the Atlantic overturning circulation to South Atlantic sources of buoyancy
The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model (OGCM). The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary conditions. Agulhas Leakage is parameterized by sources of heat and salt in the upper South Atlanti...
متن کاملUsing ocean margin density to constrain ocean circulation and surface wind strength in the past
[1] Abstract: The density structure along the ocean margins carries an integrated imprint of ocean circulation. The difference in pressure between the eastern and western margins of the ocean reflects the net meridional geostrophic transport across the ocean basin. If one assumes that the wind driven circulation is closed in the upper ocean, the wind driven component of the net geostrophic tran...
متن کامل